Reg. No. : \qquad
Name : \qquad
II Semester B.Sc. Degree (CCSS - 2014 Admn. - Regular) Examination, May 2015 CORE COURSE IN MATHEMATICS 2B02 MAT : Integral Calculus

Time : 3 Hours
Max. Marks : 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. State the mean value theorem for definite integrals.
2. Evaluate : $\int_{0}^{\infty} x^{3} e^{-x} d x$.
3. Fill in the blanks: The equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+2 z=0$ represents a surface known as
4. Evaluate : $\int_{-1}^{1} \int_{0}^{2}\left(1-6 x^{2} y\right) d x d y$.

SECTION - B

Answer any 8 questions from among the questions 5 to 14 . They carry 2 marks each.
5. Show that if f is continuous on $[a, b], a \neq b$ and if $\int_{a}^{b} f(x) d x=0$ then $f(x)=0$ at least once in $[a, b]$.
6. Define the Riemann sum of a continuous function f defined on the interval $[a, b]$.
7. Evaluate : $\int_{0}^{1} \sinh ^{2} x d x$.
8. Test for convergence : $\int_{1}^{\infty} \frac{x d x}{3 x^{4}+5 x^{2}+1}$.
9. Prove that $\Gamma(n+1)=n \Gamma(n), n>0$.
10. Find the area between $y=\sec ^{2} x$ and $y=\sin x$ from 0 to $\pi / 4$.
11. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}$ and the lines $y=1, x=4$ about the line $y=1$.
12. Find the length of the curve $y=\frac{4 \sqrt{2}}{3} x^{3 / 2}-1,0 \leq x \leq 1$.
13. Evaluate $\int_{0}^{1} \int_{0}^{x}(3-x-y) d y d x$.
14. Find the area enclosed by the lemniscate $\gamma^{2}=4 \cos 2 \theta$.

SECTION-C

Answer any 4 questions from among the questions 15 to 20 . They carry 4 marks each.
15. Find $\int x \sin ^{-1} x d x$.
16. Examine for convergence $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x$.
17. The line segments $x=1-y ; 0 \leq y \leq 1$ is revolved about the y-axis to generate the cone. Find its lateral surface area.
18. The region in the first quadrant enclosed by the parabola $y=x^{2}$, the y-axis and the line $y=1$ is revolved about the line $x=3 / 2$ to generate a solid. Find the volume of the solid.
19. Find the volume of the region enclosed by the surfaces $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
20. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x$.

SECTION - D

Answer any 2 questions from among the questions 21 to 24. They carry 6 marks each.
21. Find the area of the region between the x-axis and the graph of $f(x)=x^{3}-x^{2}-2 x ;-1 \leq x \leq 2$.
22. Prove that $\mathrm{B}(\mathrm{m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})} ; \mathrm{m}, \mathrm{n}>0$.
23. Find the area inside the smaller loop of the limacon $\gamma=2 \cos \theta+1$.
24. Find the volume of the upper region D cut from the solid sphere $p \leq 1$ by the cone $\phi=\pi / 3$.
($2 \times 6=12$)

